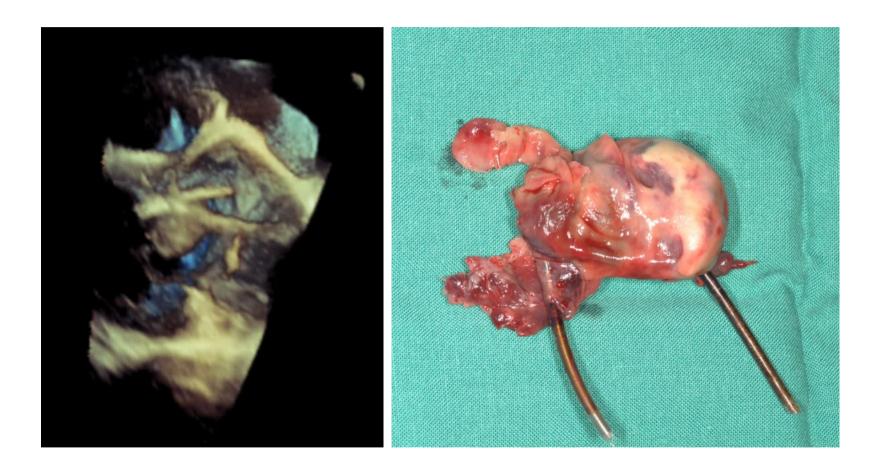
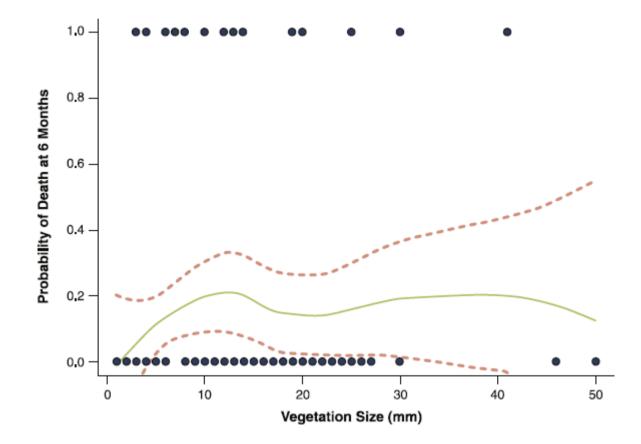


STIFTUNG DES BÜRGERLICHEN RECHTS

USZ Universitäts Spital Zürich


Pacemaker lead extraction and percutaneous vegetation aspiration

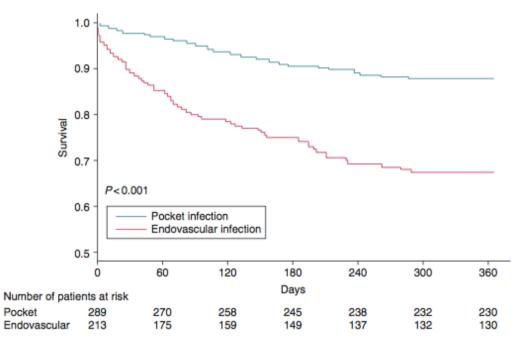
Prof. Dr. Christoph Starck, FEHRA PD Dr. Alexander Breitenstein


Disclosures...

- Consulting fees from Bayer Health Care, Biotronik, BMS/Pfizer, Boston Scientific, Daiichi Sankyo and Medtronic
- Educational grants from Biosense Webster, Biotronik and Actelion.
- Presenter fees from Abott, Biotronik, Bayer Health Care, BMS/ Pfizer, Medtronic and Philipps/Spectranetics

The problem...

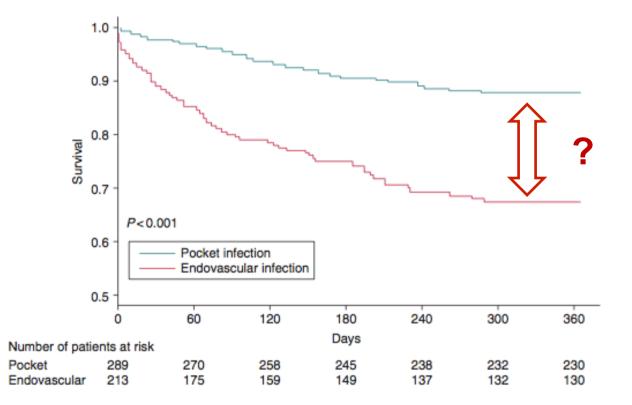
Larger vegetations = higher mortality



Greenspon et al. J Am Coll Cardiol Img 2014; 7: 541-549

ELECTRA registry

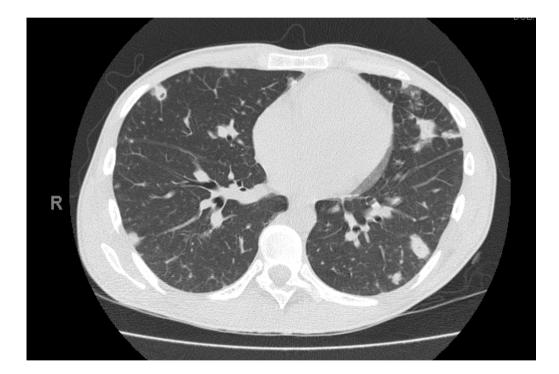
Long-term follow-up


	Table 2 Outcomes: patients, procedure, and leads		
	Patients outcomes	All patients (N = 3510)	
	Clinical success, N/Total N (%), [95% Cl]	3395/3510 (96.7) [96.1–97.3]	
	Complications, N/Total N (%), [95% C	[]	
ſ	Procedure related major	58/3510 (1.7) [1.3–2.1]	
l	complications including deaths		
	Intra-procedural	37/3510 (1.1) [0.7–1.5]	
	Post-procedural	21/3510 (0.6) [0.4–0.9]	
	Details of procedure related major co	mplications including deaths,	
	N/Total N (%), [95% CI]		
	Procedure related deaths ^a	17/3510 (0.5) [0.3–0.8]	
	Intra-procedural	9/3510 (0.3) [0.1–0.5]	
	Post-procedural	8/3510 (0.2) [0.1–0.5]	
	All cause in-hospital major complication	ons including deaths,	
	N/Total N (%), [95% CI]		
	All cause major complications	95/3510 (2.7) [2.2–3.3]	
	All cause deaths	50/3510 (1.4) [1.1–1.9]	

Low peri-procedural mortality

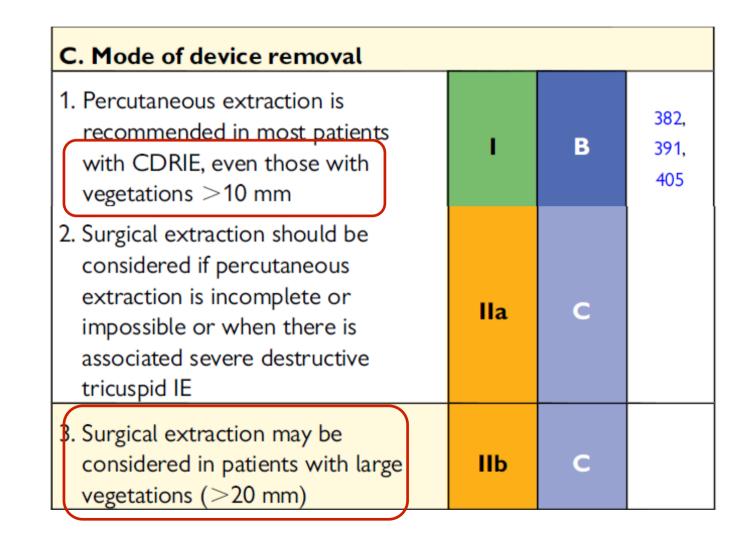
High mortality after 1 year of f/u

Why is there such a big difference...?


Cause of death in the ELECTRA registry

Details of non-procedure related major complications including

Heart failure	15/3510 (0.4)
Sepsis	11/3510 (0.3)
Respiratory arrest	5/3510 (0.1)
Multi organ failure	4/3510 (0.1)
Cerebrovascular accident	2/3510 (0.06)
Arrhythmias	2/3510 (0.06)
Deaths	33/3510 (0.9)
Other ^c	3/3510 (0.09)


deaths, N/Total N (%)

Septic pulmonary embolization after transvenous extraction....

...as potential cause for high longterm mortality...!

ESC Guidelines

Lead-related infective endocarditis: factors influencing the formation of large vegetations

Anna Polewczyk^{1,2*}, Wojciech Jacheć³, Andrzej Tomaszewski⁴, Wojciech Brzozowski⁴, Marek Czajkowski⁵, Aneta Maria Polewczyk⁶, Marianna Janion^{1,2}, and Andrzej Kutarski⁴

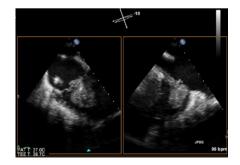
¹Department of Medicine and Health Sciences Kielce, The Jan Kochanowski University, Kielce, Poland; ²Second Department of Cardiology, Swietokrzyskie Cardiology Center, Grumwaldzka St. 45, 25-736 Kielce, Poland; ³Second Department of Cardiology, Silesian Medical University, Zabrze, Poland; ⁴Department of Cardiology, Medical University, Lublin, Poland; ⁵Department of Cardiology, Medical University, Lublin, Poland; and ⁶First Department of Pediatrics, District Hospital, Kielce, Poland

Table | Risk factors for developing ILVs including the giant, large, modest-sized, and small ones (univariate analysis) Vegetations Variable Significant Odds ratio [95%CI], Vegetations size coefficient P-value Absence Presence >3 cm 2-3 cm 1-2 cm <1 cm Number of patients (%) 148 (29.6) 352 (71.4) 28 (8.0) 45 (12.8) 122 (34.6) 157 (44.6) 79.2 % 20.8 %

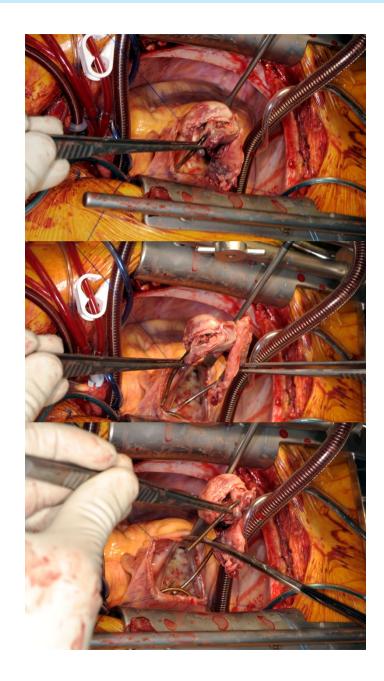
2 cm

VEGECTOMY – a **NEW-OLD** Concept !

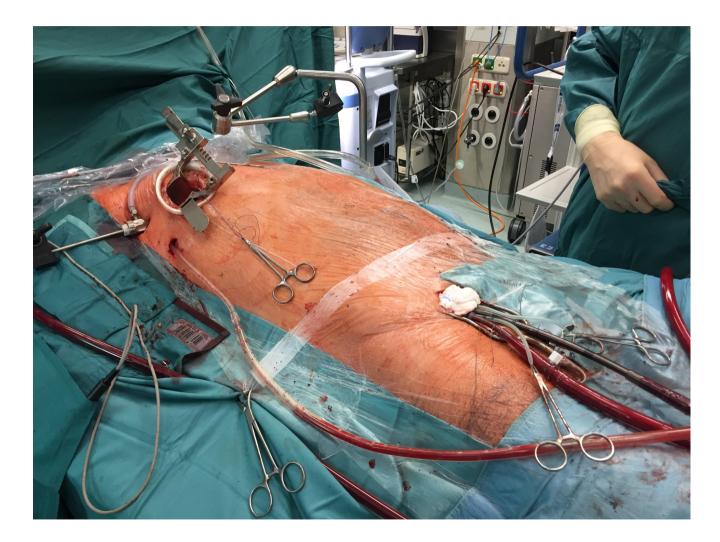
Some centers define any size of vegetations, even far less than 10 mm, as an indication for cardiopulmonary bypass, because of the risk of spreading septic emboli and a possible underestimation by echocardiography [4].

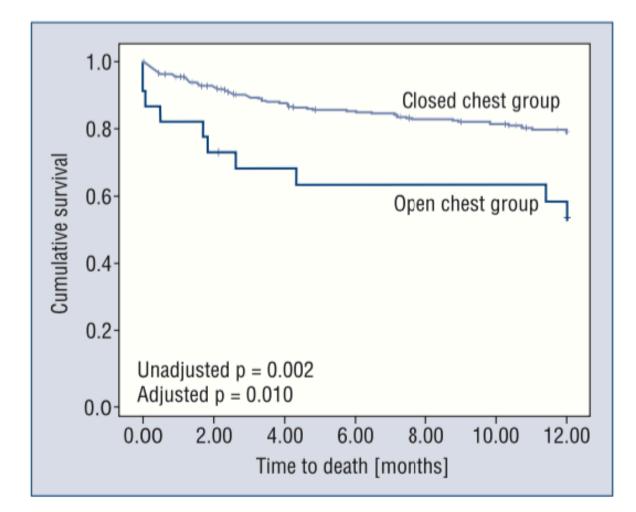

> Explantation of Implantable Defibrillator Leads Using Open Heart Surgery or Percutaneous Techniques

Daniele Camboni, MD,* Christian G. Wollmann, MD,* Andreas Löher, MD, Rainer Gradaus, MD, Hans Heinrich Scheld, MD, and Christof Schmid, MD Departments of Thoracic and Cardiovascular Surgery, and Cardiology and Angiology, University Hospital, Muenster, Germany


(Ann Thorac Surg 2008;85:50-5)

Large lead vegetations -Surgical extraction

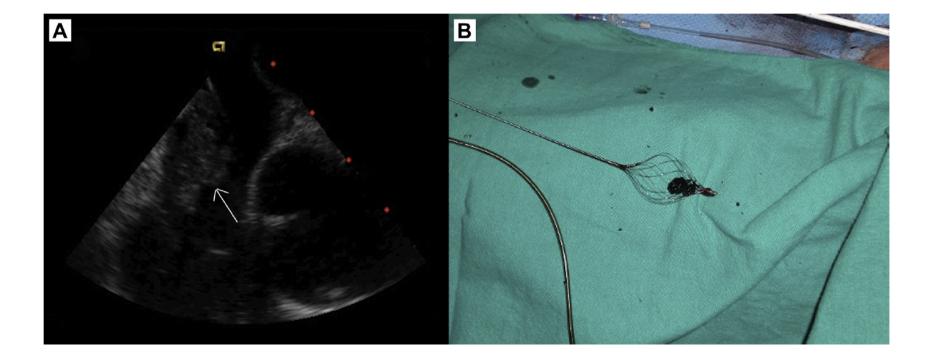




MIC Surgical Extraction

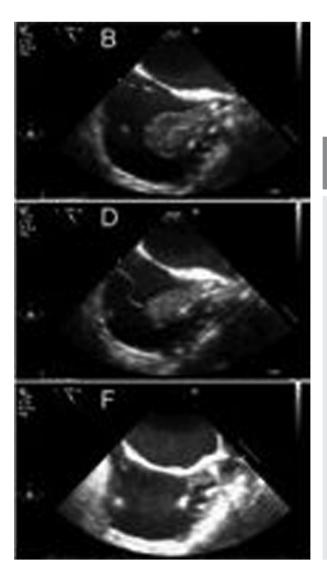
Surgical extraction is associated with higher mortality...

Surgical extraction is associated with higher mortality...and longer hospitalisation....


Table 2. Mortality and non-lethal complication rates for the two study groups.

Adverse events	Open thoracotomy	Percutaneous techniques	Р
Deaths after 30 days	4/24 (17%)	15/329 (5%)	0.036
Deaths after 6 months	8/24 (33%)	45/329 (14%)	0.020
Deaths after 1 year	10/24 (42%)	61/329 (19%)	0.012
Non-lethal complications during procedure	0/24 (0.0%)	6/329 (2.0%)	0.99
Non-lethal complications 30 days post procedure	2/24 (8%)	22/329 (7%)	0.31
Hospital length of stay [days]	23 ± 15	12 ± 9	< 0.001

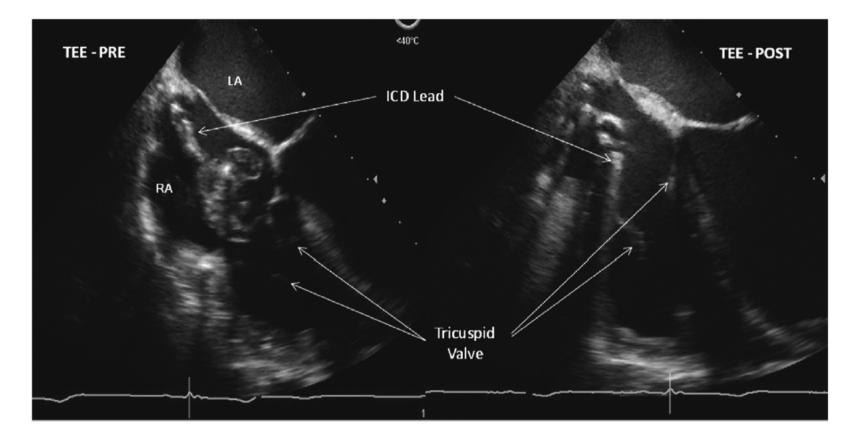
...need for alternative techniques for vegectomy



Use of intracardiac basket catheters to extract large vegetations (> 6 cm)...

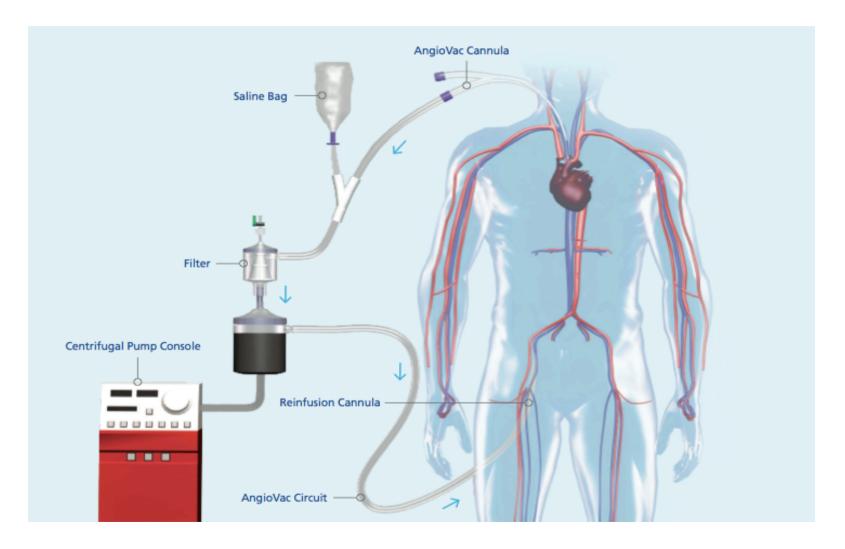
Dello Russo et al. Can J Cardiol 2013; 29: 1532-1533

Thrombolysis as a treatment option...



Therefore, we decided to perform an intravenous thrombolysis with recombinant tissue plasminogen activator (rtPA) using a dosing regimen of two infusions of 50 mg, each given over 2 h. The thrombolysis was performed

Learning points


- Complete extraction of the CD should be considered as standard therapy for most patients with CD endocarditis in combination with antibiotic treatment.
- In case of large vegetations on the leads thrombolytic therapy might be an additional treatment option to avoid open heart surgery and fulminant pulmonary embolism, and should be performed before standard transvenous lead extraction.
- Thrombolysis should be administered under echocardiographic controls to monitor the size of the thrombotic material and the right ventricular function in case of acute pulmonary embolism.

Vacuum assisted extraction of large vegetations...

3 cases, large vegetations, two step procedure

AngioVac System

	06/2015 – 12/2018
Number of patients	78
	(49 male, 29 female)
Patient age	63.5 (18-86) years
Indications:	
Right atrial thrombi	9 (11.5%)
Central vein thrombi	6 (7.7%)
Lead vegetations (>1cm)	57 (73.1%)
Pulmonary embolism	3 (3.8%)
Isolated Tricuspid valve endocarditis	1 (1.3%)
("Debulking")	
Vegetations Central venous catheter	2 (2.6%)

	06/2015 – 12/2018
Primary ECC configuration:	
RFV – LFV	68 (87.2%)
RIJV – RFV	9 (11.5%)
RFV – RIJV	1 (1.3%)
Configuration change (Drainage RFV to RIJV)	2 (2.6%)
Steering Support with Amplatz Gooseneck Snare	9 (11.5%)

	06/2015 – 12/2018
Procedural success (Aspiration):	
Complete	66 (84.6%)
Partial	9 (11.5%)
Failure	3 (3.9%)
Major complication rate	1 (1.3%)
	(tricuspid regurgitation)
30-day mortality	2 (2.6%)

Procedural success (Lead Vegetations):	
Complete	91.2 %
Partial	7.0 %
Failure	1.8 %
Procedural success (Right Atrial Thrombi):	
Complete	77.8 %
Partial	22.2 %
Failure	0 %
Procedural success (Central Venous Thrombi):	
Complete	33.3 %
Partial	33.3 %
Failure	33.3 %

ORIGINAL RESEARCH

Managing large lead vegetations in transvenous lead extractions using a percutaneous aspiration technique

Christoph T. Starck^{a,b,c}, Jürgen Eulert-Grehn^{a,b}, Marian Kukucka^d, Dirk Eggert-Doktor^d, Thomas Dreizler^e, Benjamin Haupt^e and Volkmar Falk^{a,b,f}

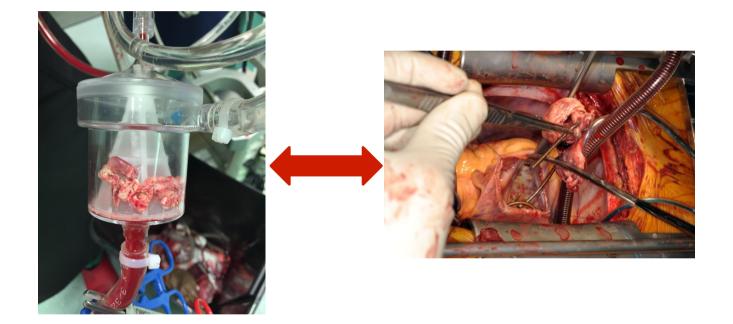
Table 1. Basic characteristics of patients. Number of patients 35 67.7 years (31-86) Mean age Male/female 26/9 Infection: Systemic CIED infection 35 (100%) Additional local pocket infection 3 (8.6%) Clinical symptoms of infection: Fever (>38.5°C) 35 (100%) Local symptoms related to device pocket 3 (9%) Septic shock 6 (17%) Mean time from diagnosis to procedure 10.9 ± 9.3 days Diabetes mellitus 12 (34.3%) Chronic kidney disease 20 (57.1%) Mean left ventricular function (EF) 38.7 ± 14.3 % Number of targeted leads 83 Mean lead implant duration 56.1 months (1-200) Lead characteristics 53 Pacemaker leads ICD leads (single versus dual coil) 30 (15/15) Preoperative mean vegetation size (assessed by TEE) 22.6 mm (12-40) Postoperative mean vegetation size (assessed by 33.6 mm (10-60) direct measurement)

Table 2. Procedural data and outcomes.

Outcome percutaneous aspiration procedure Complete procedural success Partial success	31 (88.6%) 3 (8.6%)
Major complications (aspiration procedure related)	0 (0%)
Lead extraction devices	
Locking stylet	53 (63.8%)
Polypropelene extraction sheath	1 (1.2%)
Powered rotational extraction sheath	46 (55.4%)
Outcome TLE procedure	
Complete procedural success (per	34 (97.1%)
patients)	34 (97.1%)
Clinical success (per patients)	1 (TLE related high grade TR)
Major complications TLE related (per	
patients)	
Mortality	
Operative mortality (not procedure	1 (2.9%)
related)	(due to refractory septic shock)
Survival	
30-day survival	34 (97.1%)

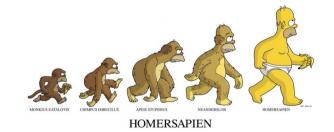
Check for updates

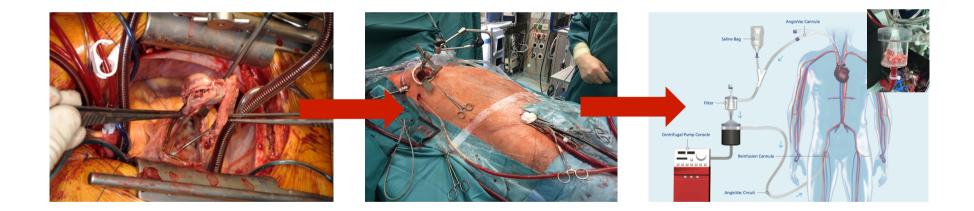
Number of patients	100
Mean Age	67.7 years (30-92)
Male / female	70 / 30
Infection: Systemic CIED infection Bacteria:	100 (100%)
MSSA	21 (21%)
MRSA	9 (9%)
Staph. epi.	25 (25%)
Other	45 (45%)
Diabetes mellitus	29 (29%)
Chronic kidney disease	41 (41%)
Number of targeted leads	243
Mean lead implant duration	78.9 months (1-231)
Lead characteristics Pacemaker leads ICD leads (single vs. dual coil)	167 76 (27/49)
Preoperative mean vegetation size (assessed by TEE)	30.8 p 13.5 mm


Table 1:
Basic characteristics of patients

Outcome percutaneous aspiration procedure		
Complete procedural success	94 (94.0%)	
Partial success	5 (5.0%)	
Major complications	3 (3.0%)	
Lead extraction devices		
Locking stylet	158 (65.0%)	
Polypropelene extraction sheath	3 (1.2%)	
Bidirectional rotational extraction sheath	139 (57.2%)	
Laser extraction sheath	14 (5.8%)	
Outcome TLE procedure Complete procedural success (per leads)	241 (99.2%)	
Mortality 30-day mortality	3 (3.0%)	

Table 2:Procedural data and outcomes


Oral presentation at HRS 2019 (San Francisco, USA)


Percutaneous aspiration of lead vegetations...

... facilitates safe transvenous lead extraction !

Evolution of therapy in CIED infections with LLV...

Take home messages

- CIED infections with large lead vegetations = challenge
- Guidelines:
 - Cut-off 20 mm → May consider surgical extraction
 - Individualized therapy
- Percutaneous aspiration + TLE = promising concept
- Percutaneous aspiration in all infections with vegetations to improve long-term outcomes...?! (NEEDS scientific proof!) <u>"General rule":</u> Vegetations > 10 mm = Vegectomy with Angiovac

Thank you very much for your attention !

