THE COAGULATION SYSTEM IN STAPHYLOCOCCUS AUREUS ENDOVASCULAR INFECTIONS

THOMAS VANASSCHE LEUVEN, BELGIUM

Staphylococcus aureus

COLONISATION INVASION

COMMENSAL ABCESS

PERSISTENCE

CATHETER- AND DEVICE-RELATED INFECTIONS DISSEMINATION

SEPSIS

ENDOVASCULAR ADHESION

INFECTIVE ENDOCARDITIS

SEVERITY

S. aureus disease spectrum

SKIN

COLONISATION INVASION COMMENSAL ABCESS

SURFACE

PERSISTENCE

CATHETER- AND **DEVICE-RELATED INFECTIONS**

SEPSIS

ENDOVASCULAR DISSEMINATION **ADHESION INFECTIVE ENDOCARDITIS**

BLOOD

THE COAGULATION SYSTEM PROTECTS AGAINST LIFE-THREATENING BLEEDING

THE COAGULATION SYSTEM PROTECTS AGAINST LIFE-THREATENING BLEEDING **BUT UNREGULATED ACTIVATION IS OUR N°1 KILLER**

THE COAGULATION SYSTEM PROTECTS AGAINST LIFE-THREATENING INFECTIONS

THE COAGULATION SYSTEM PROTECTS AGAINST LIFE-THREATENING INFECTIONS **BUT INADEQUATE RESPONSE INCREASES MORTALITY**

S. AUREUS HAS EVOLVED TO ESCAPE THE COAGULATION SYSTEM

S. AUREUS HAS EVOLVED TO USE THE **COAGULATION SYSTEM TO ITS OWN ADVANTAGE** TO PROMOTE INFECTION

S.aureus and coagulation

coagulase test negative = coagulase-negative staphylococ (CNS)

coagulase test positive = Staphylococcus aureus (S. aureus)

COAGULASE AND HEMOLYSIN TESTS AS MEASURES OF THE PATHOGENICITY OF STAPHYLOCOCCI

GEORGE H. CHAPMAN, CONRAD BERENS, ADELINE PETERS AND LILLAN CURCIO Clinical Research Laboratory and laboratory of the Lighthouse Eye Clinic of the

nical Research Laboratory and laboratory of the Lighthouse Lye Clinic of the New York Association for the Blind, New York, N.Y.

Received for publication April 18, 1984

"The determination of the coagulase is important because, regardless of its color, a coagulating strain is probably pathogenic"

S. AUREUS COAGULASES: - STAPHYLOCOAGULASE - VWBP

'STAPHYLOTHROMBIN'

PROTHROMBIN

THROMBIN

Vanassche et al, J Clin Microbiol 2010

- VWBP

Vanassche et al, J Clin Microbiol 2010

abscess formation

device-related infections

bloodstream infection and sepsis

abscess formation

PHARMACOLOGICAL STRATEGY

device-related infections

bloodstream infection and sepsis

infective endocarditis

Vanassche et al, JTH 2011

bloodstream infection and sepsis

GENETIC STRATEGY

device-related infections

Vanassche et al, J Inf Dis 2013

abscess formation

PHARMACOLOGICAL STRATEGY

device-related infections

bloodstream infection and sepsis

infective endocarditis

DIRECT THROMBIN INHIBITORS IN PATIENTS WITH *S. AUREUS* BACTEREMIA:

A RANDOMIZED CLINIAL TRIAL
CLINICALTRIALS N° NTCC 0191162 MARCH 2013 --> APRIL 2016

PRIMARY ENDPOINT

FEASIBILITY RECRUITMENT OF PATIENTS ANTI-STAPHYLOTHROMBIN ACTIVITY

SAFETY MAJOR BLEEDING

CLINICALLY RELEVANT BLEEDING: 5 DABIGATRAN VS 5 LMWH

THROMBOTIC EVENTS: 7 DABIGATRAN VS 7 LMWH

SECONDARY ENDPOINTS

CHANGE IN D-DIMERS CHANGE IN INFLAMMATORY PARAMETERS CHANGE IN BLOOD CULTURES

CLINICAL OUTCOMES

METASTATIC INFECTIONS DETECTED BY PET/CT

CHANGE IN **D**-DIMERS

POSITIVE BLOOD CULTURES

CLINICAL PARAMETERS

	DTI	LMWH	
HOSPITAL STAY	19 (13-39)	16 (12-30)	
DEFERVESCENCE (h)	26 (0-58)	12 (0-50)	
ENDOCARDITIS	2	3	
METASTATIC INFECTION	2/30 (6.7%)	6/26 (23%)	
90 day MORTALITY	10	9	
Of which infection-related	1/10	4/9	

S.aureus and coagulation

S.AUREUS TARGETS SPECIFIC THROMBIN EXOSITES TO FORM FIBRIN CLOTS THAT **INCREASE INFECTIVITY AND ADHESION IN VIVO**

TARGETING COAGULASE ACTIVITY HAS POTENTIAL TO MODULATE PATIENT **OUTCOMES**

S.aureus and platelets

Claes et al, JTH 2017

Claes et al, Blood 2014

Sepsis mortality

IN PATIENTS WITH S. AUREUS SEPSIS

von Willebrand factor (VWF)

ADAMTS-13

VWF LEVELS ARE HIGH AND **ADAMTS-13** LEVELS ARE LOW

IN PATIENTS WITH S. AUREUS SEPSIS

VWF/ADAMTS-13 CORRELATES WITH DISEASE SEVERITY

S.aureus and endocarditis

H&E Staining

MSB Staining

VWF-immunostaining

S. AUREUS USES VWF TO ATTACH TO DAMAGED VALVULAR ENDOTHELIUM IN VIVO

MORE REFINED ENDOCARDITIS ANIMAL MODELS ALLOW MORE DETAILED STUDY OF EARLY ADHESION

A new model to study early bacterial adhesion

40 um

A new model to study early bacterial adhesion

Mechanisms of adhesion

Damaged cardiac valve

Endothelium Platelets Fibrin *S. aureus* Dapi White blood cells

normal valve

damaged valve

Mechanisms of adhesion

Liesenborghs et al. Eur Heart J. 2019

Liesenborghs et al. Eur Heart J. 2019

Inflamed cardiac valve

Endothelium Platelets Fibrin S. aureus

Dapi

20

inflamed valve

infective endocarditis platelet coagulase DTI? anti-VWF? recruitment anti-VWF? anti-PLT? anti-ClfA?

TARGETED VIRULENCE FACTOR INHIBITION