

S.aureus endocarditis in the course of SAB: the bug or the host ?

François Vandenesch, Lyon University Hospital, National Reference Center for Staphylococci, INSERM U1111 - International Center for Infectiology Research, Lyon, France

Staphylococcus aureus Infective Endocarditis

- IE : 10 to 40 % of *S.aureus* bacteremia
- Predisposing factors: at risk cardiopathy, IV drug user, previous IE..
 - Not all of those patients develop IE
 - Patients with no risk factors develop IE
- What else play a role ?

Rasmussen RV 2011; Selton-Suty C 2012, Joseph JP 2013; Chang FY; Fowler VG 1997; Hill EE 2007; Forsblom E 2011; Bayer A 1987; Van Hall 2005; Sullenberger 2005; Jenkins TC 2008; Le Moing V 2015

Factors affecting the occurrence of IE in the course of bacteremia

- Predisposing factors: at risk cardiopathy, IV drug user, previous IE..
- The bug: pathovars associated with IE ?
- The host: genetic predisposition associated with IE ?

Factors affecting the occurrence of IE in the course of bacteremia

- Predisposing factors: at risk cardiopathy, IV drug user, previous IE..
- The bug: pathovars associated with IE ?
- The host: genetic predisposition associated with IE ?

Pathogenesis of IE: candidates from in vitro/ animal

- clumping factor A–B
- fibronectin-binding protein A–B
- collagen-binding protein
- SdrD/E
- Protein A
- Coagulase, vWFbp

Entenza et al. Infect Immun (2005) O'Brien et al. Mol Microbiol (2002) Hienz et al. J Infect Dis (1996) Panizzi P et al. Nat Med (2011)

Panizzi P et al. Nat Med (2011) Vanassche T et al. Thromb Haemost (2012), Claes et al. Blood (2014)J

Pathogenesis: factor known to play a role in pathogenesis in vitro/animal

- polysaccharide intercellular adhesin -> biofilm
- Cell internalisation
- Staphylococcal superantigens
 - SEC, TSST-1, EGC

Zhu Y et al. Infect Immun (2009) Que YA et al. J exp Med (2005) Salgado-Pabón et al. Mbio (2013) Stach et al. PLOS ONE (2016)

Que YA et al. J exp Med (2005)

The egc SAgs and TSST-1 are involved in vegetation formation during IE in rabbit

Fig 3. The *egc* **SAgs** and **TSST-1** are involved in vegetation formation during IE. (*A*) Total weight of vegetations dissected from aortic valves after intravenous inoculation of $3-4 \times 10^8$ CFU of wild-type MN8, MN8 Δ tstH Δ egc, MN8 Δ tstH, or MN8 Δ egc. (*B*) Bacterial counts recovered from vegetations shown in panel A. **P* = 0.01, ***P* = 0.03, one-way ANOVA and non-parametric, Kruskal-Wallis test. Horizontal lines represent the median. *P* \leq 0.05 is considered statistically significant.

Salgado-Pabón et al. Mbio (2013)

Staphylococcus aureus endocarditis: distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves

Laurens Liesenborghs¹, Severien Meyers¹, Marleen Lox¹, Maarten Criel¹, Jorien Claes¹, Marijke Peetermans¹, Sander Trenson¹, Greetje Vande Velde², Pieter Vanden Berghe³, Pieter Baatsen⁴, Dominique Missiakas⁵, Olaf Schneewind⁵, Willy E. Peetermans⁶, Marc F. Hoylaerts¹, Thomas Vanassche¹, and Peter Verhamme¹*

New IE model in mice -mechanical damage-induced: VWF-binding protein and Clumping factor A. -inflammation-induced: platelet in a sortase-independent manner

Liesenborghs, European Heart Journal (2019)

Pathogenesis of IE: summary of in vitro/animal

- Interactions with matrix proteins and platelets
- Manipulation of the host coagulation cascade
- Biofilm
- Cell internalisation
- Immune evasion via superantigens

→ Strains equipped with these virulence factors should be more prone to cause IE during SAB

Clinical correlates ?

Strains from IE versus SAB only cases

IE vs bacteremia: Specific lineages ?

Table 1. A comparison of the population structures of methicillin-susceptible *Staphylococcus aureus* isolates from patients with infective endocarditis (IE) or bloodstream infection (BSI) without IE^a.

MLST Clonal complex (CC) ^b	IE isolates (%), n=89	non-IE BSI isolates (%), n = 81	P-value ^c
CC45	16 (18.0)	14 (17.3)	1.000
CCS	16 (18.0)	15 (18.5)	1.000
CC15	11 (12.4)	4 (4.9)	0.108
CC30	11 (12.4)	11 (13.6)	0.823
CC8	8 (9.0)	10 (12.3)	0.619
CC398	5 (5.6)	2 (2.5)	0.447
Others	22 (24.7)	25 (30.9)	0.395

^aIE and non-IE isolates were collected in 2008 and 2006, respectively.

^bMLST Clonal Complexes were inferred from microarray analysis.

^cP-values were calculated for each CC using a two-tailed Fisher's exact test. The P-value for the whole contingency table was 0.592. doi:10.1371/journal.pone.0051172.t001

- 89 IE isolates: French national population- based survey, 2008
- 81 bacteremia isolates: French isolates 23 University Hospitals, 2006-2007
- -> No significant association between IE isolates and specific CC

Selton-Suty CID (2012) Grundmann,PLOS Med (2010) Tristan, PLOS ONE (2012)

? Specific lineages : VIRSTA cohort

Clonal Complex (CC)	IE isolates (%)	Bacteremia isolates (%)	P-value
	n = 72	n = 54	(a)
CC5	13 (18.1)	12 (22.2)	0.65
CC45	10 (13.9)	5 (9.3)	0.58
CC30	5 (6.9)	7 (13)	0.36
CC15	11 (15.3)	2 (3.8)	0.04
CC8	7 (9.7)	4 (7.4)	0.76
CC398	6 (8.3)	2 (3.8)	0.46
Others ^(a)	18 (25)	22 (40.7)	0.08

- 72 definite IE
- 54 Bacteremia controls: excluded IE(1) + negative TEE mandatory
- -> No significant association between IE isolates and specific CC

Le Moing, PLOS One 2015; Bouchiat, Inf Genet Evol 2015

1

Virulence factors: IE vs bacteremia

Table 2. A comparison of the genotypic profiles of methicillin-susceptible *Staphylococcus aureus* isolates from patients with infective endocarditis (IE) or bloodstream infection (BSI) without IE^a.

Gene or allele	IE isolates (%), n=89	non-IE BSI isolates (%), n = 81	P-value ^b	
Adhesins				
fnbA	89 (100.0)	79 (97.5)	0.226	
fnbB	76 (85.4)	70 (86.4)	1.000	
clfA	89 (100.0)	81 (100.0)	1.000	
clfB	89 (100.0)	81 (100.0)	1.000	
cna	37 (41.6)	33 (40.7)	1.000	
spa	89 (100.0)	81 (100.0)	1.000	
sdrC	89 (100.0)	81 (100.0)	1.000	
sdrD	73 (82.0)	62 (76.5)	0.449	
bbp	78 (87.6)	78 (96.3)	0.051	
ebpS	89 (100.0)	81 (100.0)	1.000	
map/eap	85 (95.5)	80 (98.8)	0.370	
Toxins				
eta	0 (0.0)	1 (1.2)	0.476	
etb	0 (0.0)	0 (0.0)	1.000	
tst	8 (9.0)	16 (19.8)	0.050	
sea	16 (18.0)	17 (21.0)	0.699	
seb	1 (1.1)	5 (6.2)	0.104	
sec	16 (18.0)	12 (14.8)	0.680	
sed	5 (5.6)	4 (4.9)	1.000	
see	0 (0.0)	0 (0.0)	1.000	
seg	52 (58.4)	55 (67.9)	0.209	
seh	6 (6.7)	6 (7.4)	1.000	
sei	51 (57.3)	56 (69.1)	0.116	
sej	5 (5.6)	4 (4.9)	1.000	
pvl	0 (0.0)	0 (0.0)	1.000	

- IE isolates from a population-based survey
- Bacteremia isolates from 23 university hospital
 - No virulence encoding gene associated with IF

Selton-Suty CID (2012) Grundmann,PLOS Med (2010) Tristan, PLOS ONE (2012)

Gene or allele	IE isolates	Bacteremia isolates	<i>P</i> -value ^(a)	
	(%) n = 72	(%) n = 54		
Adhesins				
encoding genes				
fnbA	72 (100)	54 (100)	1.00	
fnbB	65 (90.3)	46 (85.2)	0.42	
clfA	72 (100)	54 (100)	1.00	
clfB	72 (100)	54 (100)	1.00	
cna ^(b)	32 (44.4)	26 (48.1)	0.72	
spa	72 (100)	54 (100)	1.00	
sdrC	72 (100)	53 (98.1)	0.43	
sdrD	56 (77.8)	43 (79.6)	0.83	
bbp	66 (91.7)	49 (90.7)	1.00	
ebpS	72 (100)	54 (100)	1.00	
map/eap	71 (98.6)	48 (88.9)	0.04	
Toxins encoding	~ ~ ~	~ ~ ~		
genes				
etA	1 (1.4)	1 (1.9)	1.00	
etB	0 (0)	1 (1.9)	0.43	
tst1	7 (9.7)	8 (14.8)	0.42	
seA	12 (16.7)	5 (9.3)	0.30	
seB	6 (8.3)	8 (14.8)	0.27	
seC	10 (13.9)	2 (3.7)	0.07	
seD	7 (9.7)	5 (9.3)	1.00	
seE	0 (0)	0 (0)	1.00	
seG	34 (47.2)	35 (64.8)	0.07	
seH	2 (3.2)	4 (7.4)	0.40	
seI	34 (47.2)	35 (64.8)	0.07	
seJ	7 (9.7)	5 (9.3)	1.00	
lukSF-PV	0 (0)	4 (7.4)	0.03	
hla ^(c)	71 (98.6)	49 (90.7)	1.00	
hlb^{123} (a)	48 (66.7)	44 (81.5)	0.07	
func_hlb ^(e,1)	9 (12.5)	9 (16.7)	0.60	
Other putative				
virulence factors				
encoding genes				
icaA	72 (100)	54 (100)	1.00	
$chp^{(g)}$	46 (63.9)	32 (59.3)	0.45	
Regulation				
encoding genes				
agrI	33 (45.8)	22 (40.7)	0.59	
agrII	28 (38.9)	17 (31.5)	0.45	
agrIII	8 (11.1)	11 (20.4)	0.21	
agrIV	3 (4.2)	4 (7.4)	0.46	

Table II. Frequency of genes detected by DNA microarray in S. aureus IE and bacteremia strains.

Virulence factors: IE vs bacteremia

VIRSTA

- 72 definite IE
- 54 Bacteremia IE-excluded
- → No virulence encoding gene associated with IE

Le Moing, PLOS One 2015 Bouchiat, Inf Genet Evol 2015

WGS ?

MICROBIAL GENOMICS

RESEARCH ARTICLE Lilje et al., Microbial Genomics 2017;3 DOI 10.1099/mgen.0.000138

DATA OMICROBIOLOGY

Whole-genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis

Berit Lilje,¹ Rasmus Vedby Rasmussen,² Anders Dahl,² Marc Stegger,¹ Robert Leo Skov,¹ Vance G. Fowler Jr,³ Kim Lee Ng,¹ Kristoffer Kiil,¹ Anders Rhod Larsen,¹ Andreas Petersen,¹ Helle Krogh Johansen,⁴ Henrik Carl Schønheyder,⁵ Magnus Arpi,⁶ Flemming S. Rosenvinge,⁷ Eva Korup,⁸ Ulla Høst,² Christian Hassager,⁹ Sabine Ute Alice Gill,¹⁰ Thomas Fritz Hansen,² Thor Bech Johannesen,² Jesper Smit,¹¹ Peter Søgaard,¹² Paal Skytt Andersen^{1,13,14,•} and Niels Eske-Bruun¹⁵

Method

- 120 Definite IE, 121 IE-Excluded Bacteremia
- WGS
- CC analysis
- SNP univariate and multivariate (DAPC)
- Accumulation of SNPs
- Accessory genome (Prokka)
- K-mer (30bps) analysis

No single CC significantly associated to SABonly or to IE

Lilje et al., Microbial Genomics 2017

None of the virulence genes associated with IE or SAB-only

Lilje et al., Microbial Genomics 2017

Manhattanplot comparing SNPs per 1000 bp in IE and SAB-only samples

GWAS on larger sample size

- 623 samples
 - 380 IE-excluded Bacteremia
 - 243 Duke definite Infective Endocarditis
- Analysis
 - Virulome, regulome, nc-RNA
 - Genes
 - SNPs
 - Kmer
 - dbGWAS

Rooted Phylogenetic tree based on the 156991 SNPs from the 623 *S. aureus* strains. Reference genome : MSSA476 (CC1)

Sylvere Bastien, unpublished

Sylvere Bastien, unpublished

Sylvere Bastien, unpublished

Prediction: BAC

Random Forest predictions

CC5 and CC45 (highest number of samples)

-> Predictions are not accurate -> Predictors seem not to

be shared between CCs

Sylvere Bastien, unpublished

WGS? isolates RESEARCH ARTICLE MICROBIAL GENOMICS MICROBIOLOGY Lilie et al., Microbial Genomics 2017:3 DOI 10.1099/mgen.0.000138 DATA OMICROBIOLOGY eam Staphylococcus Whole-genome sequencing led on on bacteraemia from aureus isolates does po endocarditis Berit Lilje,¹ Rasmus Ver ers Dahl,² Marc Stegger,¹ Robert Leo Skov,¹ Vance G. Fowler Jr,³ Kim Lee Ng,1 Krin Larsen,¹ Andreas Petersen,¹ Helle Krogh Johansen,⁴ us Arpi,⁶ Flemming S. Rosenvinge,⁷ Eva Korup,⁸ Ulla Høst,² Christian Hassager,⁹ Henrik Carl omas Fritz Hansen,² Thor Bech Johannesen,² Jesper Smit,¹¹ Peter Søgaard,¹² Sabine Ute Paal Skytt An

and Niels Eske-Bruun¹⁵

Phenotype ?

- Search for discriminant phenotype
- Based on previous in vitro evidences or animal studies..
- VIRSTA cohort: IE / non-IE Bacteremia isolates

Phenotypes	IE	Ba	$P^{(a)}$
(mean ± SD)	(n=14)	(n=14)	
Fibrinogen binding (% of binding)	51.7±10.22	47.7±10.14	0.611
Fibronectin binding (% of binding)	45.7±7.31	47.4±5.82	0.826
Endothelial cells adhesion (% of binding)	93.9 ±28.80	90.1 ±33.12	0.853
Endothelial cells internalization (% of internalization)	133.1 ±13.23	140.4 ± 19.45	0.483
Biofilm production (BFI)	12.5±7.21	12.3±7.41	0.968
hNP-1 resistance (% of survival)	35.3±9.27	36.6±18.25	0.810
Staphylokinase production (kinetics slope)	0.13±0.031	0.21±0.045	0.130
Platelet aggregation (lag time)	2.5 ±2.42	2.2±1.57	0.757
CD69 activation (fluorescence intensity)	694.6 ±133.28	631.8 ±158.83	0.764

Phenotypes IE vs Bacteremia

Bouchiat, Inf Genet Evol 2015

Adhesion to Fg under shear stress Β. Fibrinogen binding 100 80-% binding 60-40-Adhesion capacity (bacterial surface adherent to matrix) 20-25000-0 20000-Ś ଚ୍ଚ 15000-10000-5000-Bacterennia ¢

Adhesion to fibrinogen under shear stress

Bouchiat, Inf Genet Evol 2015 – Liesenborghs and Bouchiat, unpublished

strains

Surface protein expression

Tchikaya & Moreau unpublished

RNAIII expression

Tchikaya & Moreau unpublished

Phenotype ?

- No discriminant in vitro phenotype identified
- ? In vivo phenotype
 - > Animal models

The Leuven mice models

Adhesion on valves

CC5 VIRSTA: 12 IE strains, 12 Bacteremia strains, 11 mices per group

Laurens Liesenborghs & Severien Meyers

No difference between the IE and BAC pool in damage induced endocarditis

VIRSTA cohort CC5 (log 6)

Laurens Liesenborghs & Severien Meyers

The CC5 IE pool MAY causes more lesions in the inflammatory model

Laurens Liesenborghs & Severien Meyers

The CC5 IE pool <u>but not CC45</u> pool causes more lesions in the inflammatory model cC5 CC5 + CC45

The bug: pathovars associated with IE ?

- No genomic signal on large cohorts
- No relevant in vitro phenotype identified
- Animal:
 - mechanical damage-induced IE model: no signal
 - inflammatory model of IE (relevance ++): weak signal

Factors affecting the occurrence of IE in the course of IE

- Predisposing factors: at risk cardiopathy, IV drug user, previous IE..
- The bug: pathovars associated with IE ?
- The host: genetic predisposition associated with IE ?

Predispositions to SA infections

Potential associations between common genetic variants and human susceptibility to *S. aureus* infection by GWAS:

- 361 AB vs 699 controls (Nelson, BMC Infectious Diseases 2014): NS
- 309 SA-infected people vs 2952 controls (Ye, Front Genet 2014): NS
- GWAS evidence of human genetic susceptibility to *S. aureus* infection: 4701 case of *S.aureus* infections and 45344 controls. Two polymorphisms located near HLA-DRA and HLA-DRB1 genes on chromosome 6 in the <u>HLA class II region</u> achieved genome-wide significance. (DeLorenze, JID 2016).
- <u>HLA class II region</u> on chromosome 6 associated with SAB susceptibility. 390 SAB, 175 controls. (Cyr, Genes Immun 2017)

No study searched for the occurrence of IE in the course of *S.aureus* Bacteremia

Genome-wide association study on *Staphylococcus aureus*-induced endocarditis: Results from the VIRSTA cohort

- VIRSTA study group and:
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada.
- Département de médecine moléculaire, Université Laval, Québec, Canada.
- Genetic Laboratory Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Statens Serum Institut, Copenhagen, Denmark

GWAS of IE: M&M

- Training cohort=Virsta
 - 78 patients presenting definite IE
 - 78 age- and gender-matched control SAB patients
- Replication sets=Danish cohort
 - 57 patients presenting IE
 - 153 patients presenting non-IE bacteremia
- Genotyping
 - Illumina HumanOmni Exp-12v1 BeadChip array

Manhattan plot – GWAS VIRSTA cohort

Three nominally associated SNPs (p-value < 1x10-5) were identified on chromosome 3

GWAS VIRSTA cohort

- The 3 SNPs (p-value < 1x10-5) on chromosome 3 were near or within the genes CLDN11 and SLC7A14
- Frequency of the minor allele lower in cases than in controls

SNP	Chromosome	Position on Hg19	A1/A2	A1 in cases	A1 in controls	OR	P-value	Position to SLC7A14gene	Position to CLDN11 gene
rs6414536	3	170176173	A / G	0.127	0.361	0.257	6.248e-06	-	Intron
rs2287489	3	170178057	A / C	0.127	0.361	0.257	6.248e-06	3' UTR	Intron
rs4955730	3	170179621	G/A	0.112	0.361	0.223	1.212e-06	3' UTR	Intron
rs6769887	3	170172774	G/A	0.082	0.285	0.225	1.496e-05	-	Intron

– > suggest a protective effect of the minor allele against IE

Replication set: Danish patients

- 57 cases and 153 controls
- Study limited to the best 2 candidates
- PCR-sequencing on those 2 loci
- -> Although non-significant, the frequency of the minor allele is lower in cases than in Bacteremia
- -> suggest a protective effect of the minor allele against IE

SNP	A1/A2	A1 in 57 SaEI	A1 in 153 controls	OR	P value
		Cases			
rs2287489	A/C	0.2946	0.3208	0.8843	0.6215
rs4955730	G/A	0.2797	0.3171	0.8362	0.468

Expression Quantitative Trait Loci

- functional meaning of nominated SNPs assessed by quantification of mRNA expression
- Material: explanted aortic valves from patients with calcific stenosis
- RNA expression on Illumina expression BeadChips
- Results:
 - No SNPs associated with the expression of CLDN11
 - Significant association for SLCA14 (unknown function)

Valve eQTL

(Expression Quantitative Trait Loci)

- Allele rs4955730-C associated with increased mRNA levels of SLC7A14 in aortic valve tissues.
- Tentative model: the minor allele decreases susceptibility to IE through up-regulation of SLC7A14 in valve tissue

Moreau, Front Microbiol 2018

The occurrence of IE in human: a tentative model

- Most human are genetically susceptible to IE, a fraction harbour SNPs that maybe protective. Larger cohort needed
- Most S.aureus can cause IE, if some alteration is important, they are unique (strain-specific) and undetectable by GWAS unless hundred thousand isolates are tested
- > very large (100 000) international cohort needed

Virsta study group (Vincent Le Moing)

Clinical centres: Besançon: Catherine Chirouze, Elodie Curlier, Cécile Descottes-Genon, Bruno Hoen, Isabelle Patry, Lucie Vettoretti. Dijon: Pascal Chavanet, Jean-Christophe Eicher, Marie-Christine Greusard, Catherine Neuwirth, André Péchinot, Lionel Piroth. Lyon: Marie Célard, Catherine Cornu, François Delahaye, Malika Hadid, Pascale Rausch. Montpellier: Audrey Coma, Florence Galtier, Philippe Géraud, Hélène Jean-Pierre, Vincent Le Moing, Catherine Sportouch, Jacques Reynes. Nancy: Nejla Aissa, Thanh Doco-Lecompte, François Goehringer, Nathalie Keil, Lorraine Letranchant, Hepher Malela, Thierry May, Christine Selton-Suty. Nîmes: Nathalie Bedos, Jean-Philippe Lavigne, Catherine Lechiche, Albert Sotto. Paris: Xavier Duval, Emila Ilic Habensus, Bernard Iung, Catherine Leport, Pascale Longuet, Raymond Ruimy. Rennes: Eric Bellissant, Pierre-Yves Donnio, Fabienne Le Gac, Christian Michelet, Matthieu Revest, Pierre Tattevin, Elise Thebault.

- <u>Coordination and statistical analyses:</u> François Alla, Pierre Braquet, Marie-Line Erpelding, Laetitia Minary.
- <u>Centre National de Référence des staphylocoques</u>: Michèle Bès, Jérôme Etienne, Anne Tristan, François Vandenesch.
- Erasmus University Rotterdam: Alex Van Belkum, Willem Vanwamel.
- **Sponsor CHU de Montpellier:** Sandrine Barbas, Christine Delonca, Virginie Sussmuth, Anne Verchère. **Fundings:** French ministry of Health, Inserm

Genome Project

- Statens Serum Institut, Copenhagen, Denmark: Marc Stegger, Paal S. Andersen, Robert L. Skov
- University of Melbourne: Ben Howden, Stefano Guileri
- Duke University: Vance Fowler
- Pasteur Institute. Sylvain Brisse, Philippe Glaser

Human susceptibility

- Département de médecine moléculaire, Université Laval, Québec, Canada: Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec : Alison Clémenceau
- Cardiology Department, AP-HP, Bichat Hospital, Paris, France: David Messika-Zeitoun
- Statens Serum Institut, Copenhagen, Denmark: Paal S. Andersen, Robert L. Skov, Niels Bruuns
- The VIRSTA Study group Xavier Duval & Vincent Le Moing

Infective endocarditis Model

• Center for Molecular and Vascular Biology, KU Leuven, Belgium: Severien Meyers, Laurens Liesenborghs, Marleen Lox, Katrien Cludts, Peter Verhamme, Thomas Vanassche

Acknowledgements

STAPHYLOCOQUES Centre National de Référence

CIRI INSERM U1111-CNRS 5308-UCBL-ENS Team staphylococcal Pathogenesis AND Hospices Civils de Lyon-CNR des staphylocoques

- Sylvere Bastien
- Michele Bes
- Coralie Bouchiat
- Florence Couzon
- Tom Geissmann
- Fredéric Laurent
- Karen Moreau
- Jean-Philippe Rasigade
- Patricia Simoes-Martin
- Anne Tristan

