

Antimicrobial peptides and device coating

Sebastian A.J. Zaat

Amsterdam UMC Department of Medical Microbiology University of Amsterdam

Outline

- Pathogenesis
- ES TE heart valves
- Synthetic Antimicrobial and Antibiofilm Peptides
- Antimicrobial supramolecular polymers
- Antimicrobial Photochemical internalization

Native valve Streptococcal Endocarditis

Rabbit Model of Experimental Infective Endocarditis

Initial Clearance of Streptococcus oralis from rabbit VGs

Viridans Streptococci Within Platelet-Fibrin Clots Are Shielded from Phagocytes

Biomaterial implants for *In situ* tissue engineering of heart valves

In situ tissue regeneration process

Bioresorbable scaffold

Β.

Inflammatory

phase

Proliferative phase

Remodelling phase

Heart valve

Electrospun scaffold

Heart valve in situ

Infection Risk ?

Wissing 2017

Incidence Native Valve IE Surprisingly Low

Vegetations in **2.4%** of 3404 autopsy specimen of hospitalized patients without IE

Daily low level transient bacteremia due to chewing candy, eating and tooth brushing: 7 - 51%

Bacteria adhering to / embedded in vegetations are shielded from phagocytes: expected to cause IE!!

IE cases:

- General population: 0.7 6.8 per 100,000 per year
- Persons at risk for IE: 20 180 per 100.000 per year

PROTECTIVE MECHANISM: Thrombocidins / PMP

Human platelet Thrombocidins, cationic AMPs

Can we provide similar protection to electrospun TE prosthetic valves?

Requirements:

- Novel antimicrobials preventing biofilm formation
- No resistance development
- Manufacturing system

Antimicrobial surface designs

Anti-adherent

Contact killing

Release

Busscher 2013

BALI, the Biofilm Alliance, EU FP7

Design <u>Synthetic Antimicrobial and Anti-biofilm Peptides</u>, SAAPs

- Inspired by human cathelicidin LL-37
- Inspired by human Thrombocidin-1

Develop therapeutic applications with SAAPs

- Controlled release coating for implant surfaces
- Ointment for skin wound infections

Martijn Riool

Anna de Breij

Leonie de Boer

Human cathelicidin LL-37, and Synthetic Antimicrobial and Antibiofilm Peptides (SAAPs)

- Precursor hCAP18, produced by neutrophils and epithelial cells
- Amphipathic a-helical structure
- Derived peptides:
 - SAAPs (SAAP-148)
 - OP-145

SAAP-148, the present lead compound

De Breij, Riool 2018

OP-145 Polymer Lipid Encapsulation Matrix **U** (PLEX) for titanium implants

Composed of PLGA / DPPC / DSPC / Cholesterol / OP-145 (10 wt%)

- Initial burst release 55% in the first 48h
- First order kinetic release (~1%) for 30 days
- OP-145 released from coating kills S. *aureus*

PLEX-OP-145 prevents rabbit humerus intramedullary nail infection

- Intramedullary (IM) nail infection model
 - New Zealand White rabbits
 - Right humerus
 - 6×10⁴ CFU *S. aureus JAR*
 - TAN IM nail
 - No coat
 - PLEX-OP-145 coating
 - Evaluation at 28 days
 - Quantitative culture
 - Contact radiograph
 - Clinical parameters

AO Foundation Fintan Moriarty

PLEX-OP-145: contact radiographs

uncoated Signs of infection

OP-145-coated No signs of infection

De Breij 2016

De Breij 2016

21

14

days

28

200

0

3

0

- elevated CRP level ≥7d

 \rightarrow Clinical signs of infection **PREVENTED WITH PLEX-OP-145**

De Breij 2016

Heart valves? SuperActive!

Supramolecular Biomaterials with Antimicrobial and Regenerative Activity

Development of multi-functional bioactive supramolecular materials with both **antimicrobial** and **regenerative** activity

Supramolecular materials

Ureido-pyrimidinone

Zaccaria 2018

Zaccaria 2018

SuperActive plans

Development of multi-functional bioactive supramolecular materials with both antimicrobial and regenerative activity

Antimicrobial activity

Novel AMPs TC19 and SAAP-148

Regenerative activity

- Heparin-binding peptide (HBP)
- Cell-adhesive properties

And what about abscesses and intracellular bacteria.... ?

Intracellular S. *epidermidis* in mouse periimplant subcutaneous tissue after 14 days

- Bacteria in tissue, within macrophages (F4/80)
- Mice implant-associated sepsis after 3 weeks
- Survival due to deranged cytokine responses

Mechanism of AM-PCI

No illumination With illumination

TPCS₂₄

Gentamicin

Photochemical internalization enhancement of gentamicin against intracellular S. epidermidis

lerged

Rescue of S. *aureus* - infected zebrafish embryos with gentamicin - PCI

- Non-toxic
- Effective protection owing to PCI

Zhang 2018

In summary: full circle!

- Platelets produce matrix shielding invading bacteria
- ES matrix also can provide shelter against immune cells
- Trombocidins protecting from NVE
- BALI novel SAAPs from LL-37 and Thrombocidins
- SAAPs potent novel antimicrobials
- Self assembling polymers with AMPs
- Protect TE heart valves with SAAP- supramolecular system
- Kill intracellular bacteria with AM-PCI

Amsterdam UMC **University Medical Centers**

> Martijn Riool **Xiaolin Zhang** Sandra Bovenkerk Leonie de Boer Payal Balraadjsing Paul Kwakman Jeroen Krijgsveld Jaap Dankert⁺

Willem-Jan Metsemakers Andy Fäh Fintan Moriarty

Research Platform

Anna Posthumus Meyes-de Breij Peter Nibbering Robert Cordfunke Pieter Hiemstra Jan-Wouter Drijfhout

Or Cohen Malka Reichart Noam Emanuel

THERAPEUTICS

Kristof Vercruysse Remko van Leeuwen Michel de Baar

Technische Universiteit Eindhoven University of Technology

Moniek Schmitz Patricia Dankers

Nermina Malanovic **Regina Leber** Karl Lohner

Universiteit Leiden

Wouter Veneman Herman Spaink

Platelet Microbicidal Activity Is an Important Defense Factor against Viridans Streptococcal Endocarditis

Jacob Dankert,¹ Jeroen Krijgsveld,^{1,a} Janneke van der Werff,² Willem Joldersma,² and Sebastian A. J. Zaat¹

The Journal of Infectious Diseases 2001;184:597-605

THE JOURNAL OF BIOLOGICAL CHEMISTRY © 2000 by The American Society for Biochemistry and Molecular Biology, Inc. Vol. 275, No. 27, Issue of July 7, pp. 20374–20381, 2000 Printed in U.S.A.

Thrombocidins, Microbicidal Proteins from Human Blood Platelets, Are C-terminal Deletion Products of CXC Chemokines*

Received for publication, August 27, 1999, and in revised form, March 29, 2000

Jeroen Krijgsveld‡§, Sebastian A. J. Zaat‡1, Jan Meeldijk‡||, Peter A. van Veelen**, Gang Fang‡‡, Bert Poolman‡‡, Ernst Brandt§§11, Jan E. Ehlert§§11, Alma J. Kuijpers§|||, Gerard H. M. Engbers|||, Jan Feijen|||, and Jacob Dankert‡

Imaging of Biomaterial-associated **U** Infection using Zebrafish Analysis

Journal of Controlled Release 283 (2018) 214-222

Contents lists available at ScienceDirect

Journal of Controlled Release

journal homepage: www.elsevier.com/locate/jconrel

Photochemical internalization enhances cytosolic release of antibiotic and increases its efficacy against staphylococcal infection

Xiaolin Zhang^{a,b}, Leonie de Boer^a, Laura Heiliegers^a, Sandra Man-Bovenkerk^a, Pål Kristian Selbo^c, Jan W. Drijfhout^d, Anders Høgset^e, Sebastian A.J. Zaat^{a,*}